Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy

نویسندگان

  • Sandra Kleinecke
  • Sarah Richert
  • Livia de Hoz
  • Britta Brügger
  • Theresa Kungl
  • Ebrahim Asadollahi
  • Susanne Quintes
  • Judith Blanz
  • Rhona McGonigal
  • Kobra Naseri
  • Michael W Sereda
  • Timo Sachsenheimer
  • Christian Lüchtenborg
  • Wiebke Möbius
  • Hugh Willison
  • Myriam Baes
  • Klaus-Armin Nave
  • Celia Michèle Kassmann
چکیده

Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

B cell Therapy to Treat an Axonal Neuropathy in Mixed Connective Tissue Disease

The B cell is a vital contributor to humoral immunity. The B cell-specific antigen CD20 is expressed during B cell development, starting at the pre-B cell level and persists through B cell differentiation, but is lost during terminal differentiation to plasma cells. Rituximab is a monoclonal antibody that destroys both normal and malignant B cells that have CD20 on their surfaces and is ther...

متن کامل

Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury.

Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (norma...

متن کامل

A New Regulatory Mechanism for Kv7.2 Protein During Neuropathy: Enhanced Transport from the Soma to Axonal Terminals of Injured Sensory Neurons

Kv7.2 channel expression has been reported to decrease in dorsal root ganglia (DRG) following the induction of a peripheral neuropathy while other experiments show that Kv7.2 accumulates in peripheral neuromas. The mechanisms underlying these novel expression patterns are poorly understood. Here we use immunofluorescence methods to analyze Kv7.2 protein expression changes in sensory neurons fol...

متن کامل

P152: Neurotoxicants and Mechanisms Neurodegenerative in Acrylamide

Many chemicals with broad industrial, pharmaceutical and agricultural application produce a neurotoxic syndrome in humans and experimental animals involving weight loss, skeletal muscle weakness and ataxia. Neurotoxicity is defined as a structural change or a functional alteration of the nervous system resulting from exposure to a chemical, biological or physical agent. Neurotoxicity including ...

متن کامل

A conserved domain in axonal targeting of Kv1 (Shaker) voltage-gated potassium channels.

Axonal voltage-gated potassium (Kv1) channels regulate action-potential invasion and hence transmitter release. Although evolutionarily conserved, what mediates their axonal targeting is not known. We found that Kv1 axonal targeting required its T1 tetramerization domain. When fused to unpolarized CD4 or dendritic transferrin receptor, T1 promoted their axonal surface expression. Moreover, T1 m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017